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1 Introduction

Since the classic work of Vickrey [15], the ranking of various auction forms in terms of
expected revenue has been the central question of auction theory (Milgrom [10] andWilson
[17] provide surveys). When the bidders are risk-neutral and their information about the
value of the object is independently and identically distributed, the so-called “revenue
equivalence principle” (see, for instance, Myerson [13]) provides a complete answer to the
revenue ranking question. When the assumption of independence is relaxed, the answer is
less well understood. Utilizing the assumption that the bidders’ information is affiliated,
Milgrom and Weber [11] develop the most comprehensive set of revenue ranking results
to date; however, they restrict attention to “standard” auction forms in which only the
winner is required to pay.
In this paper, we extend the analysis of Milgrom and Weber [11] to auctions with

the property that losing bidders also pay positive amounts.1 Specifically, we examine the
performance of two alternative auction forms, the war of attrition and the all-pay auction.
These auction forms share the common feature that all losing bidders pay exactly their
bids and differ only in the amounts paid by the winning bidder. In the former, the winning
bidder pays the second highest bid; whereas in the latter, the winner pays his own bid. As
such, they are analogous to the standard second-price and first-price sealed bid auctions,
respectively.2 We identify circumstances in which the expected revenue from the auctions
considered here exceeds that from the corresponding auctions in which only the winner
pays. Thus, the war of attrition yields greater revenue than the second-price auction, and
the all-pay auction yields greater revenue than the first-price auction. We also show that
the war of attrition outperforms the all-pay auction and thus yields higher revenue than
all known sealed bid auctions.
Our reasons for examining these alternative, “non-standard” auction forms are three-

fold: First, from a mechanism design standpoint, the restriction to allocation schemes
which require only the person receiving the object to pay seems unwarranted. For in-
stance, the prevalence of lotteries as allocation mechanisms serves to highlight the restric-
tiveness of this assumption. Second, although these forms may not be widely used in an
auction setting, the underlying games are natural models of conflict in many situations.
For instance, the war of attrition has been used as a model for conflict among animals and
insects ([8], [2]) and the struggle for survival among firms ([7]), while the all-pay auction
has been used to model the arms race ([14]) and rent-seeking activity, such as lobbying
([4], [3]). Our third reason for considering these forms is that, as our results indicate,
they raise greater revenue than the forms previously considered and hence are worthy of
attention as auctions per se.3

This paper is organized as follows: Section 2 briefly describes the model used in the
analysis. Since this is the same as the model in [11], we eschew a detailed description. As

1Of course, in an auction with an entry fee each bidder would also pay a positive amount. However,
the amount would be fixed by the seller and, unlike the auctions we consider, not depend on the bid itself.
We examine this issue in more detail in Section 6 below.

2Indeed, the “war of attrition” is perhaps better described as a “second-price all-pay auction” and
the “all-pay auction” as a “first-price all-pay auction.” We have chosen, however, to retain existing
terminology.

3While it is known that in common value settings it is possible to extract nearly all the surplus ([6],
[9]), the mechanisms that do this depend on the underlying distribution of signals.
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in [11], our major assumption is that bidders’ signals are affiliated. In Section 3, we find
sufficient conditions for the existence of a symmetric and increasing equilibrium in the war
of attrition. Section 4 contains a parallel development for the all-pay auction. In both
the war of attrition and the all-pay auction, bidders’ signals being not “too affiliated”
is sufficient to guarantee the existence of symmetric, increasing equilibria. In Section 5,
we develop revenue comparisons between these auctions and the standard forms. These
comparisons form the basis for the results reported above. Section 6 carries out revenue
comparisons when entry fees are present. Section 7 concludes.

2 Preliminaries

We follow the model and notation of Milgrom and Weber [11] exactly. There is a single
object to be auctioned and there are n bidders. Each bidder i receives a real valued signal,
Xi, prior to the auction that affects the value of the object. Let S = (S1, S2, ..., Sm) be
other random variables that influence the value but are not observed by any bidder. The
value of the object to bidder i is then:

Vi = u
³
S,Xi, {Xj}j 6=i

´
where u is non-negative, continuous, and increasing4 in its variables. It is assumed that
E [Vi] <∞.
The random variables S1, S2, ..., Sm,X1,X2, ...,Xn have a joint density f(S,X1,X2, ...,Xn),

and the function f is symmetric in the bidders’ signals. We suppose that f satisfies the
affiliation inequality, that is,

f (z ∨ z0) f (z ∧ z0) ≥ f (z) f (z0)

where z ∨ z0 denotes the component-wise maximum of z and z0 and z ∧ z0 denotes the
component-wise minimum of z and z0. Intuitively, this means that a high value of one of
the variables, Sj or Xi, makes it more likely that the other variables also take on high
values.
In what follows, the random variable Y1 = max{Xj}j 6=1. Let fY1 (· | x) denote the

conditional density of Y1 given that X1 = x, and let FY1 (· | x) denote the corresponding
cumulative distribution function. Finally, let

λ(y | x) = fY1(y | x)
1− FY1(y | x)

denote the hazard rate of the distribution FY1(· | x) .
The variables X1 and Y1 are also affiliated (see [11]), and the following simple facts

about the conditional distribution, FY1 (· | x), will be useful for our analysis.5

Fact 1 FY1(y | x)/fY1(y | x) is non-increasing in x.

Fact 2 λ(y | x) is non-increasing in x.

Fact 3 FY1(y | x) is non-increasing in x.

4Throughout the paper, the term “increasing” is synonymous with “strictly increasing.”
5A proof of Fact 1 may be found in [11]. Fact 2 may be proved in a similar manner. Fact 3 then

follows from Facts 1 and 2.
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Define v(x, y) = E [V1 | X1 = x, Y1 = y] . Since X1 and Y1 are affiliated, v(x, y) is
a non-decreasing function of its arguments. As in [11], we assume that it is, in fact,
increasing.
The reader should consult [11] for details.

3 Equilibrium in the War of Attrition

We model the war of attrition as an auction in the following manner. Prior to the start of
the auction each bidder, i, receives a signal, Xi, which gives him or her some information
about the value of the object. Each bidder submits a sealed bid of bi, and the payoffs are:

Wi =


Vi −maxj 6=i bj if bi > maxj 6=i bj
−bi if bi < maxj 6=i bj

1
#{k:bk=bi}Vi − bi if bi = maxj 6=i bj

where i 6= j. We have assumed that if bi = maxj 6=i bj , the prize goes to each winning
bidder with equal probability.
The analogy with the classic war of attrition model of conflict among two animals

(Bishop, Canning and Smith [2]) should be clear. The derivation of a symmetric equilib-
rium with independent private values, that is, when Xi = Vi and the Xi’s are indepen-
dently and identically distributed, is well known (see, for instance, [12]).
We begin with a heuristic derivation of the symmetric equilibrium strategy.
Suppose that bidders j 6= 1 follow the symmetric and increasing equilibrium strategy

β. Suppose bidder 1 receives a signal, X1 = x, and “bids” b. Then bidder 1’s expected
payoff is:

Π (b;x) =

Z β−1(b)

−∞
(v(x, y)− β(y)) fY1 (y | x) dy

− £1− FY1
¡
β−1(b) | x¢¤ b (1)

Maximizing (1) with respect to b yields the first order condition:

v
¡
x, β−1(b)

¢
fY1

¡
β−1(b) | x¢ 1

β0(β−1(b))
− £

1− FY1
¡
β−1(b) | x¢¤ = 0 (2)

At a symmetric equilibrium, b = β(x), and thus (2) yields:

β0(x) = v(x, x)
fY1 (x | x)

1− FY1 (x | x)
= v(x, x)λ(x | x) (3)

and thus:

β (x) =

Z x

−∞
v(t, t)λ(t | t)dt

where, as before, λ(· | t) denotes the hazard rate of the conditional distribution FY1 (· | t) .
The derivation of β is only heuristic because (3) is merely a necessary condition, and

the optimality of β(x) against β has not been established. Theorem 1 below provides a
sufficient condition for β to be a symmetric equilibrium.

Definition 1 Let ϕ : R2 → R be defined by: ϕ(x, y) = v(x, y)λ(y | x).
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Theorem 1 Suppose that, for all y, ϕ(·, y) is an increasing function. A symmetric equi-
librium in the war of attrition is given by the function β defined as:

β(x) =

Z x

−∞
v(t, t)λ(t | t)dt. (4)

Proof. Let x denote the supremum of the support of Y1. If bidders j 6= 1 use the strategy
β, then it is never profitable for bidder 1 to bid more than β(x).
If bidder 1 bids an amount, β(z), when the signal is x, his or her payoff is:

Π (z;x) =

Z z

−∞
(v(x, y)− β(y)) fY1 (y | x) dy − [1− FY1 (z | x)]β(z)

=

Z z

−∞
v(x, y)fY1 (y | x) dy − β(z)FY1(z | x) +

Z z

−∞
β0(y)FY1(y | x)dy

− [1− FY1 (z | x)]β(z)

=

Z z

−∞
v(x, y)fY1 (y | x) dy +

Z z

−∞
β0(y)FY1(y | x)dy − β(z)

Using (3) and (4) we obtain:

Π (z;x) =

Z z

−∞
v(x, y)fY1 (y | x) dy −

Z z

−∞
v(y, y)λ(y | y) [1− FY1(y | x)] dy

=

Z z

−∞
[v(x, y)λ (y | x) dy − v(y, y)λ(y | y)] [1− FY1(y | x)] dy

=

Z z

−∞
[ϕ(x, y)− ϕ(y, y)] [1− FY1(y | x)] dy.

Since, by assumption, ϕ(·, y) is an increasing function, for all y < x, [ϕ(x, y)− ϕ(y, y)] >
0, and, for all y > x, [ϕ(x, y)− ϕ(y, y)] < 0. Thus, Π(z, x) is maximized by choosing z = x.
Finally, observe that the equilibrium payoff to a bidder who receives a signal of x is:

Π(x;x) =

Z x

−∞
[ϕ(x, y)− ϕ(y, y)] [1− FY1(y | x)] dy ≥ 0 (5)

and thus each bidder is willing to participate in the auction.

Notice that ϕ(x, y) is the product of v(x, y) and λ(y | x) where the former is increasing
in x, while the latter is decreasing in x. As a result, ϕ(·, y) is increasing if the affiliation
between X1 and Y1 is not so strong that it overwhelms the increase in the expected
value of the object, v(·, y), resulting from a higher signal, x. Of course, the assumption
is automatically satisfied if bidders’ signals are independent. On the other hand, when
affiliation is strong, small changes in a bidder’s signal may have a relatively large marginal
effect on his expectation of the value of the object. That is, circumstances in which λ(y | ·)
is steeply decreasing might at the same time lead to a situation in which v (·, y) is steeply
increasing. The latter may compensate for the former and ϕ(·, y) may be increasing even
with strongly affiliated signals.
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The assumption that ϕ(·, y) is increasing can be replaced by the weaker condition that,
for all x :

for all y < x, [ϕ(x, y)− ϕ(y, y)] > 0
for all y > x, [ϕ(x, y)− ϕ(y, y)] < 0

since this is all that is needed to ensure that Π(z;x) is maximized at z = x.
As an example of a situation where the conditions of Theorem 1 are satisfied, suppose

n = 2, and let X (resp. Y ) be the random variable that denotes bidder 1’s (resp. 2’s)
signal. Let:

f(x, y) =
4

5
(1 + xy) on [0, 1]× [0, 1] .

Then fY1(y | x) = 2(1+xy)
2+x , and λ(y | x) = 2(1+xy)

2+x−2y−xy2 . If v(x, y) = x, then ϕ(x, y) =
2x(1+xy)

2+x−2y−xy2 , and it may be verified that ϕ(·, y) is an increasing function.
Next, let supp fX denote the common support of the bidders’ signals, and let x and

x denote the infimum and supremum of supp fX , respectively. Of course, it may be that
x= −∞ or x =∞ or both.
Two features of the equilibrium strategy, (4) deserve to be highlighted. First, a bidder

receiving the lowest possible signal, x, bids zero. This is true even if v(x, x) is strictly
positive. Second, as a bidder’s signal approaches x, his bid becomes unbounded. Again,
this holds even if the expected value of the object at x, v(x, x) is finite.

Proposition 1 Suppose that, for all y, ϕ(·, y) is an increasing function. Then (i) limx→x β(x) =
0; and (ii) limx→x β(x) =∞.

Proof. (i) follows directly from (4).
To verify (ii), choose z such that v(z, z) > 0. From (4), we can write:

β(x) =

xZ
−∞

v(y, y)λ(y | y)dy

=

zZ
−∞

v(y, y)λ(y | y)dy +
xZ
z

v(y, y)λ(y | y)dy

≥
zZ
−∞

v(y, y)λ(y | y)dy +
xZ
z

v(z, y)λ(y | z)dy

≥
zZ
−∞

v(y, y)λ(y | y)dy +
xZ
z

v(z, z)λ(y | z)dy (6)

where the first inequality follows from the fact that ϕ(·, y) = v(·, y)λ(y | ·) is increasing
and the second from the fact that v(z, ·) is increasing.
But now observe that for all y:

λ (y | z) = − d

dy
(ln [1− FY1(y | z)])

and thus: Z x

z

λ (y | z ) dy = ln

µ
1− FY1(z | z)
1− FY1(x | z)

¶
(7)

6



Using (7) in (6) we obtain:

β(x) ≥
zZ
−∞

v(y, y)λ(y | y)dy + v(z, z) ln

µ
1− FY1(z | z)
1− FY1(x | z)

¶

As x→ x, FY1(x | z)→ 1. This completes the proof.

4 Equilibrium in the All-Pay Auction

In an all-pay auction each bidder submits a sealed bid of bi and the payoffs are:

Wi =


Vi − bi if bi > maxj 6=i bj
−bi if bi < maxj 6=i bj

1
#{k:bk=bi}Vi − bi if bi = maxj 6=i bj

where i 6= j. As before, we have assumed that if bi = maxj 6=i bj , the prize goes to each
winning bidder with equal probability.
Once again it is useful to begin with a heuristic derivation.
Suppose bidders j 6= 1 follow the symmetric (increasing) equilibrium strategy α. Sup-

pose bidder 1 receives a signal, X1 = x, and “bids” b. Then bidder 1’s expected payoff
is:

Π(b;x) =

Z α−1(b)

−∞
v(x, y)fY1(y | x)dy − b (8)

Maximizing (8) with respect to b yields the first order condition:

v(x, α−1(b))fY1(α
−1(b) | x) 1

α0(α−1(b))
− 1 = 0. (9)

At a symmetric equilibrium, α(x) = b and thus (9) becomes:

α0(x) = v(x, x)fY1(x | x) (10)

and thus:

α(x) =

xZ
−∞

v(t, t)fY1 (t | t) dt.

Once again, the derivation is heuristic since (10) is only a necessary condition.

Definition 2 Let ψ : R2 → R be defined by ψ(x, y) = v(x, y)fY1(y | x).

Theorem 2 Suppose that, for all y, ψ(·, y) is an increasing function. A symmetric equi-
librium in the all-pay auction is given by the function α defined as:

α(x) =

xZ
−∞

v(t, t)fY1 (t | t) dt. (11)
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Proof. Let x denote the supremum of the support of Y1. If bidders j 6= 1 use the strategy
α, then clearly it cannot be a best response for bidder 1 to bid more than α(x).
If bidder 1 bids an amount α(z) when the signal is x, his or her payoff is:

Π (z;x) =

Z z

−∞
v(x, y)fY1 (y | x) dy − α(z)

=

Z z

−∞
v(x, y)fY1 (y | x) dy −

Z z

−∞
v(y, y)fY1 (y | y) dy

=

Z z

−∞
[ψ(x, y)− ψ(y, y)] dy

Since, by assumption, ψ(·, y) is an increasing function, for all y < x, [ψ(x, y)− ψ(y, y)] >
0, and, for all y > x, [ψ(x, y)− ψ(y, y)] < 0. Thus, Π(z, x) is maximized by choosing z = x.
Finally, observe that the equilibrium payoff to a bidder who receives a signal of x is:

Π(x, x) =

Z x

−∞
[ψ(x, y)− ψ(y, y)] dy ≥ 0

and thus each bidder is willing to participate in the auction.

It is useful to compare some qualitative features of the equilibrium strategy (11) in
the all-pay auction to the equilibrium strategy (4) of the war of attrition. It is still the
case that a bidder receiving the lowest possible signal, x, bids zero. This is true even if
v(x, x) is strictly positive. However, in an all-pay auction, as a bidder’s signal approaches
x, his bid is bounded if the expected value of the object at x, v(x, x) is finite. This is in
contrast to the unboundedness of the bids in the war of attrition.

Proposition 2 Suppose that, for all y, ψ(·, y) is an increasing function. Then (i) limx→x α(x) =
0; and (ii) limx→x α(x) ≤ limx→x v(x, x).

Proof. (i) follows immediately from (11).
To verify (ii) notice that:

α(x) ≤
xZ
−∞

v (x, y) fY1 (y | x) dy ≤ v (x, x)

xZ
−∞

fY1 (y | x) dy ≤ v (x, x) .

5 Revenue Comparisons

In this section we examine the performance of the war of attrition and the all-pay auction
in terms of the expected revenue accruing to the seller. As a benchmark, recall from
Milgrom and Weber [11] that, with affiliation, the expected revenue from a second-price
auction is greater than the expected revenue from a first-price auction.
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5.1 War of Attrition versus Second-Price Auction

Our first result is that, under the condition that ϕ(x, y) is increasing in x, the revenue
from the war of attrition is greater than that from a second-price auction.

Theorem 3 Suppose ϕ(·, y) is increasing. Then the expected revenue from the war of
attrition is greater than or equal to the expected revenue from a second-price auction.

Proof. In a second-price auction, the equilibrium bid by a bidder who receives a signal of
x is v(x, x) (see [11], pages 1100-1101), and thus the expected payment by such a bidder
is:

eII(x) =

Z x

−∞
v(y, y)fY1(y | x)dy (12)

In a war of attrition, the expected payment in equilibrium by a bidder who receives a
signal of x is:

eW (x) =

xZ
−∞

β(y)fY1(y | x)dy + [1− FY1(x | x)]β(x)

= β(x)FY1(x | x)−
xZ
−∞

β0(y)FY1(y | x)dy + [1− FY1(x | x)]β(x)

= β(x)−
xZ
−∞

β0(y)FY1(y | x)dy

=

xZ
−∞

v(y, y)λ(y | y) dy −
xZ
−∞

v(y, y)λ(y | y)FY1(y | x)dy

=

xZ
−∞

v(y, y)λ(y | y)fY1(y | x)
·
1− FY1(y | x)
fY1(y | x)

¸
dy

=

xZ
−∞

v(y, y)fY1(y | x)
·
λ(y | y)
λ(y | x)

¸
dy. (13)

For y ≤ x, Fact 2 implies that λ(y | y) ≥ λ(y | x) and thus:

eW (x) =

xZ
−∞

v(y, y)fY1(y | x)
·
λ(y | y)
λ(y | x)

¸
dy

≥
xZ
−∞

v(y, y)fY1(y | x)dy

= eII(x)

using (12).
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5.2 All-Pay Auction versus First-Price Auction

Our second result is that, under the condition that ψ(x, y) is increasing in x, the revenue
from an all-pay auction is greater than that from a first-price auction.

Theorem 4 Suppose ψ(·, y) is increasing. Then the expected revenue from the all-pay
auction is greater than or equal to the expected revenue from a first-price sealed bid auction.

Proof. Let b∗(x) denote the equilibrium bid in a first-price auction of a bidder who
receives a signal of x (see [11], page 1107). Then the expected payment is:

eI(x) = FY1(x | x)b∗(x)

= FY1(x | x)
xZ
−∞

v(y, y)dL(y | x) (14)

where

L(y | x) = exp
µ
−
Z x

y

fY1(t | t)
FY1(t | t)

dt

¶
.

(14) can be rewritten as:

eI(x) =

xZ
−∞

v(y, y)fY1(y | y)
·
FY1(x | x)
FY1(y | y)

¸
exp

− xZ
y

fY1(t | t)
FY1(t | t)

dt

 dy. (15)

We now argue that, for all y < x:

exp

µ
−
Z x

y

fY1(t | t)
FY1(t | t)

dt

¶
≤
·
FY1(y | y)
FY1(x | x)

¸
(16)

To see this, note that:

−
xZ
y

fY1(t | t)
FY1(t | t)

dt ≤ −
xZ
y

fY1(t | y)
FY1(t | y)

dt

= lnFY1(y | y)− lnFY1(x | y)
≤ lnFY1(y | y)− lnFY1(x | x)

where the first inequality follows from Fact 1 in Section 2; and the second inequality
follows from Fact 3. Taking the exponent of both sides yields (16).
Using (16) in (15):

eI(x) ≤
Z x

−∞
v(y, y)fY1(y | y)dy

= α(x)

= eA(x),

the expected payment in an all-pay auction.

Weber [16] reports a result similar to Theorem 4, as do Amann and Leininger [1]. The
proof in the latter paper utilizes the “linkage principle” ([11]) and is very different from
the one presented here. Also, it directly assumes the existence of an increasing equilibrium
in the all-pay auction.
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5.3 War of Attrition versus All-Pay Auction

Our next result compares the expected revenue from the war of attrition to that from the
all-pay auction.
We first establish that the sufficient condition identified in Section 3 implies that there

is an increasing equilibrium in the all-pay auction also.

Proposition 3 Suppose that ϕ(·, y) is an increasing function of x. Then ψ(·, y) is an
increasing function of x.

Proof. Let x < x0. Then since ϕ(·, y) is an increasing function, we have that:

v(x, y)

·
fY1(y | x)

1− FY1(y | x)
¸
< v(x0, y)

·
fY1(y | x0)

1− FY1(y | x0)
¸

By Fact 3 in Section 2, FY1(y | x) ≥ FY1(y | x0) and thus:

v(x, y)fY1(y | x) < v(x0, y)fY1(y | x0)

which completes the proof.

We now show that if ϕ(·, y) is increasing, the war of attrition outperforms the all-pay
auction.

Theorem 5 Suppose ϕ(·, y) is increasing. Then the expected revenue from the war of
attrition is greater than or equal to the expected revenue from an all-pay auction.

Proof. In an all-pay auction, the expected payment in equilibrium by a bidder who
receives a signal of x is:

eA(x) =

Z x

−∞
v(y, y)fY1(y | y)dy

From (13) in a war of attrition, the expected payment in equilibrium is:

eW (x) =

xZ
−∞

v(y, y)fY1(y | x)
·
λ(y | y)
λ(y | x)

¸
dy

=

xZ
−∞

v(y, y)fY1(y | y)
·
1− FY1(y | x)
1− FY1(y | y)

¸
dy

≥
xZ
−∞

v(y, y)fY1(y | y)dy

= eA(x).

since, by Fact 3, for all y < x, FY1(y | x) ≤ FY1(y | y).

Analogous to the result that the equilibrium bids in the second-price auction exceed
those in the first-price auction, we have the result that the equilibrium bids in the war of
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attrition exceed those in the all-pay auction. To see this, observe that:

β(x) =

xZ
−∞

v(t, t)

·
fY1(t | t)

1− FY1(t | t)
¸
dt

≥
xZ
−∞

v(t, t)fY1(t | t)dt

= α(x).

5.4 All-Pay Auction versus Second-Price Auction

It remains to compare the expected revenues from the all-pay auction to that from the
second-price auction. We now show by means of two examples that no general ranking of
the two auctions is possible.
Let:

f(x, y) =
4

5
(1 + xy) on [0, 1]× [0, 1] .

The density function f satisfies the affiliation inequality.
If v(x, y) = x, ψ(x, y) is an increasing function of x so that the conditions of Theorem

2 are satisfied. Routine calculations show that, for all x > 0, eA(x) > eII(x), and thus,
in this case, the expected revenue from an all-pay auction is greater than that from a
second-price auction.
On the other hand, if v(x, y) = x4, we have that for x∗ ' 0.707 :

eA(x) > eII(x) if x < x∗

eA(x) < eII(x) if x > x∗

and furthermore:

eA =

Z 1

0

eA(x)fX (x) dx <

Z 1

0

eII(x)fX (x) dx = eII

so that, in this case, the expected revenue from an all-pay auction is less than that from
a second-price auction.

5.5 Summary of Revenue Comparisons

The relationships between the expected revenues from the various auction forms may be
summarized as follows:

War of
Attrition

%ϕ -ϕ

Second-Price All-Pay
- %ψ

First-Price

Why is it that making all bidders pay increases expected revenues? To understand the
reason for this it is worthwhile to recall why the standard second-price auction performs
better than the first-price auction ([11]). By establishing a linkage between the price paid
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by the winning bidder and the second highest signal, a second-price auction induces a
feedback between a bidder’s own signal and his expected payment. For a fixed bid, if
a bidder’s own signal is higher, he expects that the second highest signal is also higher,
and hence, so is the price he expects to pay. Thus the expected payment function in a
second-price auction is steeper in a bidder’s own signal than in a first-price auction. Since
the expected payment of a bidder with the lowest possible signal is zero in both cases, the
expected payment in a second-price auction is greater than in a first-price auction. We
will refer to this as the “second-price effect.”
In both the war of attrition and the all-pay auction losing bidders are required to pay

their own bids. This induces a similar linkage. For a fixed bid, if a bidder’s own signal is
higher, he expects that the other signals are also higher, thus raising the probability that
he will lose the auction. This increases his or her expected payment relative to that in a
standard auction. Once again, the expected payment function in, say, an all-pay auction
is steeper in a bidder’s own signal than in a first-price auction. As before, the expected
payment in an all-pay auction is also greater than in a first-price auction. This may be
referred to as the “losing bid effect.”
To see this formally, let eM (z, x) be the expected payment by a bidder with signal x

who bids as if his or her signal were z in an auction mechanism ‘M.’ For the first-price
and all-pay auctions we have:

eI (z, x) = FY1 (z | x) b∗ (z)

eA (z, x) = FY1 (z | x)α (z) + [1− FY1 (z | x)]α (z)
As in Milgrom and Weber [11] the key to the ranking of auctions is the derivative of
eM (z, x) with respect to the second argument, that is, eM2 (z, x) evaluated at z = x.
To see that adding an all-pay component to the standard auctions leads to an increase

in this derivative consider

eI2 (z, x) =
∂

∂x
[FY1 (z | x) b∗ (z)] < 0

because of Fact 3, whereas

eA2 (z, x) =
∂

∂x
[FY1 (z | x)α (z)] +

∂

∂x
[(1− FY1 (z | x))α (z)] = 0.

The second term in this expression is the “losing bid effect.”
The revenue ranking results of this section are driven by the combination of the two

effects. As shown above, an all-pay auction is superior to a first-price auction because of
the addition of the losing bid effect. Of course, the second-price auction is superior to the
first-price auction because of the second-price effect. The war of attrition incorporates
both the second-price and the losing bid effects and thus dominates the other three forms.6

The comparison between the second-price auction and the all-pay auction is ambiguous
because each incorporates only one of the two effects and either effect may dominate.
Our results require that the equilibrium strategies are increasing in the signals received

by the bidders; and implicitly, that the affiliation between bidders’ signals is not too strong.

6There is a danger of oversimplification here. Since the second-price effect is present in both the
second-price auction and the war of attrition, their relative sizes may matter and there is no a priori
reason to believe that the war of attrition will be superior. The combination of the second-price and the
loser-pay effects in the war of attrition could potentially be smaller than the pure second-price effect in
the second-price auction. Of course, Theorem 3 shows otherwise.
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Nonetheless, if the value of the object increases rapidly, then even strongly affiliated signals
may have a symmetric, increasing equilibrium.
Weber [16] has constructed the following simple example in which an increasing equi-

librium does not exist. Suppose that the density function f is uniform over [0, 1]
2∪ [1, 2]2 .

Then the support of fY1 (· | x) is [0, 1] if x ∈ [0, 1] and is [1, 2] if x ∈ [1, 2] . For this ex-
ample, the affiliation is rather strong, and in both the war of attrition and the all-pay
auction, the symmetric equilibrium strategies are not increasing in the signals. This is
because for small δ > 0, a bidder with a signal 1− δ is almost sure to win and bids high,
whereas a bidder with signal 1 + δ is almost sure to lose and bids nearly zero.
A comparison of auction forms when symmetric equilibrium strategies are not increas-

ing presents many difficulties, both technical and conceptual. Standard methods of finding
equilibrium strategies rely essentially on these being monotonic; when the equilibrium is
non-monotonic, it cannot be derived as the solution to a differential equation. Even if
non-monotonic equilibrium strategies could be determined, the comparison of auctions
solely on the basis of revenue would be problematic. This is because when equilibria are
not increasing, it is not necessary that the bidder with the highest signal would win the
object. In these circumstances, different auction forms may lead to completely different
allocations of the object and thus the total surplus (the sum of the seller’s expected rev-
enue and the bidders’ expected payoff) may also differ across auctions. Thus, while the
ranking of auctions in terms of expected revenue may still be useful from the perspec-
tive of a seller, the possible inefficiencies resulting from the seller’s preferred auction may
result in a different ranking from a social perspective.

5.6 Full Extraction of Surplus

The auction forms we have considered may, in certain circumstances, extract all the
surplus from the bidders; that is, the bidders’ expected payoff in equilibrium may be zero.
This is in marked contrast to the standard auction forms for which the expected payoff is
always positive.

Proposition 4 A bidder’s equilibrium payoff in the second-price auction (and hence in
the first-price auction) is strictly positive.

Proof. Recall that the equilibrium payoff of a bidder with a signal x > x in a second-price
auction may be written as:

ΠII (x, x) =

Z x

−∞
[v (x, y)− v (y, y)] fY1 (y | x) dy

> 0

since v (x, y) is assumed to be (strictly) increasing in x.7

To see that the war of attrition may extract all the surplus, consider the following
example. Suppose n = 2 and let X (resp. Y ) be the random variable that denotes bidder
1’s (resp. 2’s) signal. Let:

f(x, y) =
1

4
(x+ y)

− 1
2 exp

³
− (x+ y)

1
2

´
on (0,∞)× (0,∞) .

7It is necessary here that the variables X1 and Y1 are not perfectly correlated. This follows from our
assumption that the joint distribution of these variables admits a density.
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It is routine to verify that f satisfies the affiliation inequality. Then

fY1(y | x) =
1

2
(x+ y)−

1
2 exp

³
− (x+ y)

1
2 + x

1
2

´
,

and

λ(y | x) = 1

2
(x+ y)−

1
2 .

If v(x, y) = (x+ y)
1
2 , then ϕ(x, y) = 1

2 . Even though ϕ(x, y) is not strictly increasing in
x, a symmetric monotonic equilibrium of the war of attrition exists and the equilibrium
strategy is strikingly simple:

β (x) =
x

2
.

Using (5), the equilibrium payoff is:

ΠW (x, x) =

Z x

−∞
[ϕ (x, y)− ϕ (y, y)] [1− FY1 (y | x)] dy

= 0.

From the work of Crémer and McLean [6] and McAfee et al [9], we know that it
is possible to extract (almost) all the surplus in common value settings. In general,
however, the optimal mechanism depends on the distribution of signals and may be rather
complicated. We have shown that, in certain circumstances, the war of attrition may
actually be the optimal mechanism.
In a similar vein, Bulow and Klemperer [5] have constructed an example in which the

all-pay auction extracts all the surplus from the bidders. Our results imply that if the
all-pay auction extracts all the surplus, then there cannot be a monotonic equilibrium in
the war of attrition; and indeed this is the case in Bulow and Klemperer’s example.

6 Entry Fees

Consider a situation where all bidders wishing to participate in a second-price sealed bid
auction are required to pay a fixed entry fee, �, at the time bids are submitted.8 Thus, all
bidders, including losing bidders, pay positive amounts to the seller. This introduces an
all-pay aspect to a standard second-price auction, making it appear, at least superficially,
like the war of attrition. Since the all-pay aspect is crucial to the revenue ranking results
obtained previously, one might wonder whether the beneficial effect of having losers pay
their bids is tempered or perhaps even neutralized by the introduction of these fees. Will
the war of attrition with an entry fee still outperform all other known sealed bid auction
forms with the same fee? In this section, we reëxamine the revenue ranking results in the
presence of entry fees.
Suppose that the seller charges a (small) fixed entry fee of �. Let x∗ be the solution to

H (x) ≡
Z x

−∞
v (x, y) fY1 (y | x) dy = �.

H (·) is an increasing function of x since, by assumption ϕ (·, y) and hence ψ (·, y) are
increasing in x. Thus, a solution exists. As in [11], call x∗ the screening level associated

8We suppose that the number of potential bidders is n and that, prior to submitting his or her bid, no
bidder obtains any information about the identities or number of actual bidders.
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with �. A bidder with signal x∗ is exactly indifferent between paying � and participating
in the auction with a bid of 0 and not participating.
It is routine to verify that symmetric equilibrium strategies in the war of attrition with

an entry fee of � are given by:

β (x) =

½ R x
x∗ v (y, y)λ (y | y) dy if x ≥ x∗

Not participate if x < x∗

and indeed all bidders with signals x ≥ x∗ earn a non-negative expected profit even
after paying the entry fee. All bidders with signals x < x∗ do not find it worthwhile to
participate.
Similarly, symmetric equilibrium strategies in the all-pay auction with the same entry

fee are given by:

α (x) =

½ R x
x∗ v (y, y) fY1 (y | y) dy if x ≥ x∗

Not participate if x < x∗.

Similar expressions obtain for the equilibrium strategies of the standard second-price
and first-price auctions with an entry fee (see [11], pp. 1111). For all four auction forms
with the same entry fee, if ϕ is increasing, a bidder with signal x will participate if and
only if x ≥ x∗.9 Now by mimicking earlier arguments, one can show that the revenue
comparisons of the previous section continue to hold.

7 Conclusion

The war of attrition and the all-pay auction are rather simple modifications of the second-
price and first-price auctions, respectively. We have identified conditions under which
these generate higher expected revenue than their standard counterparts by incorporating
an additional revenue enhancing linkage: the “losing bid effect.”
One might reasonably ask why such auction forms are not observed in practice. The

possible reasons are numerous: The presence of risk-averse bidders is known to affect the
revenue ranking results of the standard auction forms, and there is no reason to suppose
that their all-pay analogues would be immune to this effect. Simultaneous or sequential
auctions for goods whose values are related in some way would also affect the revenue
ranking results. The assumption of a purely non-cooperative one-shot framework might
likewise be suspect if bidders know one another or expect to meet again in the future.
Finally, generating higher revenues, by itself, need not imply that an auction form would
be adopted since, at the same time, bidders would be less inclined to participate in such
auctions. Institutional or cultural constraints as well as competition from other sellers
may then preclude a given seller from choosing a war of attrition or an all-pay auction
despite its desirable revenue characteristics.

9Milgrom and Weber [11] provide an example to show that this may not hold in a first-price sealed
bid auction. For their results on entry fees they directly assume that such an anomaly does not occur, a
condition they call regularity. However, it may be shown that if ψ (·, y) is increasing, a condition on the
primitives of the model, the entry fee is regular.
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